550=(.3t^2)+11.5t

Simple and best practice solution for 550=(.3t^2)+11.5t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 550=(.3t^2)+11.5t equation:


Simplifying
550 = (0.3t2) + 11.5t

Reorder the terms:
550 = 11.5t + (0.3t2)

Solving
550 = 11.5t + (0.3t2)

Solving for variable 't'.

Reorder the terms:
550 + -11.5t + (-0.3t2) = 11.5t + -11.5t + (0.3t2) + (-0.3t2)

Combine like terms: 11.5t + -11.5t = 0.0
550 + -11.5t + (-0.3t2) = 0.0 + (0.3t2) + (-0.3t2)
550 + -11.5t + (-0.3t2) = (0.3t2) + (-0.3t2)

Combine like terms: (0.3t2) + (-0.3t2) = 0.0
550 + -11.5t + (-0.3t2) = 0.0

Begin completing the square.  Divide all terms by
-0.3 the coefficient of the squared term: 

Divide each side by '-0.3'.
-1833.333333 + 38.33333333t + t2 = 0

Move the constant term to the right:

Add '1833.333333' to each side of the equation.
-1833.333333 + 38.33333333t + 1833.333333 + t2 = 0 + 1833.333333

Reorder the terms:
-1833.333333 + 1833.333333 + 38.33333333t + t2 = 0 + 1833.333333

Combine like terms: -1833.333333 + 1833.333333 = 0.000000
0.000000 + 38.33333333t + t2 = 0 + 1833.333333
38.33333333t + t2 = 0 + 1833.333333

Combine like terms: 0 + 1833.333333 = 1833.333333
38.33333333t + t2 = 1833.333333

The t term is 38.33333333t.  Take half its coefficient (19.16666667).
Square it (367.3611112) and add it to both sides.

Add '367.3611112' to each side of the equation.
38.33333333t + 367.3611112 + t2 = 1833.333333 + 367.3611112

Reorder the terms:
367.3611112 + 38.33333333t + t2 = 1833.333333 + 367.3611112

Combine like terms: 1833.333333 + 367.3611112 = 2200.6944442
367.3611112 + 38.33333333t + t2 = 2200.6944442

Factor a perfect square on the left side:
((t) + 19.16666667)((t) + 19.16666667) = 2200.6944442

Calculate the square root of the right side: 46.911559814

Break this problem into two subproblems by setting 
((t) + 19.16666667) equal to 46.911559814 and -46.911559814.

Subproblem 1

(t) + 19.16666667 = 46.911559814 Simplifying (t) + 19.16666667 = 46.911559814 t + 19.16666667 = 46.911559814 Reorder the terms: 19.16666667 + t = 46.911559814 Solving 19.16666667 + t = 46.911559814 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-19.16666667' to each side of the equation. 19.16666667 + -19.16666667 + t = 46.911559814 + -19.16666667 Combine like terms: 19.16666667 + -19.16666667 = 0.00000000 0.00000000 + t = 46.911559814 + -19.16666667 t = 46.911559814 + -19.16666667 Combine like terms: 46.911559814 + -19.16666667 = 27.744893144 t = 27.744893144 Simplifying t = 27.744893144

Subproblem 2

(t) + 19.16666667 = -46.911559814 Simplifying (t) + 19.16666667 = -46.911559814 t + 19.16666667 = -46.911559814 Reorder the terms: 19.16666667 + t = -46.911559814 Solving 19.16666667 + t = -46.911559814 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-19.16666667' to each side of the equation. 19.16666667 + -19.16666667 + t = -46.911559814 + -19.16666667 Combine like terms: 19.16666667 + -19.16666667 = 0.00000000 0.00000000 + t = -46.911559814 + -19.16666667 t = -46.911559814 + -19.16666667 Combine like terms: -46.911559814 + -19.16666667 = -66.078226484 t = -66.078226484 Simplifying t = -66.078226484

Solution

The solution to the problem is based on the solutions from the subproblems. t = {27.744893144, -66.078226484}

See similar equations:

| 2ln(3x)=20 | | cos^2x+5cos(x)=1 | | 4-(x-8)=3x+2(x-1) | | 2+6x+3x=65 | | r+2+9=12 | | 9y+7=88 | | -x+2x+7x=74 | | -47=5x+2x+2 | | 5(z-1)(-z-4)=0 | | 6d+5=4d+9 | | 5(v-4)-5=-2(-4v+5)-9v | | 2(x+3)=x+3 | | 2w+3w-324=0 | | 3(y-1)=2 | | -32=4(x-1) | | -8+x-4x=-23 | | -8x+24=-5x-9 | | 4x+10=32 | | 35=4x+2x-1 | | 18(5/6x-1/3)+14(1/2x-5/7)=0 | | 2y-10-y=4 | | f(x)=5lnx | | (12-9x).33=17 | | 11tsquare+1t-10=0 | | 6x+3(5x+13)=186 | | 3x+1=10x+4 | | y=-9x^2-36x-35 | | 3y+8=7+4y | | (12-9x).667=17 | | x=42-8y | | g(x)=x-8 | | 2(5x-4)-(3x+2)+11=-3(-5+10)+3x-6(4x-3) |

Equations solver categories